
Python Profiling Starter Kit
Christian Hudon

http://christianhudon.name/

Why?

Source:
https://arstechnica.com/gaming/2021
/03/hacker-reduces-gta-online-load-ti
mes-by-over-70-percent/

A Quick Story...

https://arstechnica.com/gaming/2021/03/hacker-reduces-gta-online-load-times-by-over-70-percent/
https://arstechnica.com/gaming/2021/03/hacker-reduces-gta-online-load-times-by-over-70-percent/
https://arstechnica.com/gaming/2021/03/hacker-reduces-gta-online-load-times-by-over-70-percent/

120k players every day
Source: https://playercounter.com/grand-theft-auto-5/

✖
game out for 7.5 years

Source: https://en.wikipedia.org/wiki/Grand_Theft_Auto_Online

✖
5 minutes average loading time

Source: https://www.reddit.com/r/gtaonline/comments/ht4i56/your_average_online_loading_time/

Let's do the math!

https://playercounter.com/grand-theft-auto-5/
https://en.wikipedia.org/wiki/Grand_Theft_Auto_Online
https://www.reddit.com/r/gtaonline/comments/ht4i56/your_average_online_loading_time/

1 140 625
total days waiting for the game to load!

Profiling? What’s That?

Source: https://www.jetbrains.com/lp/python-developers-survey-2020/

https://www.jetbrains.com/lp/python-developers-survey-2020/

How?

How to Proceed: Build a Model

● “Minimum viable model”
● Pay attention to the bottlenecks!

Where to Focus: Amdahl’s Law*

9

* See Wikipedia article

VintageCompSci!

100%0%
EXECUTION TIME

x%

(1-x) %

https://en.wikipedia.org/wiki/Amdahl%27s_law

How to Proceed: Be Systematic

1. Set yourself up for repeatable measurements
2. Shorter profiling runtime is better
3. Build a model!
4. Don't guess, measure!

(aka Use the Tools, Luke!)
5. Change the code (1 change is easier)
6. Measure the impact
7. Repeat until satisfied / out of time

Use the Tools, Luke!

The Landscape
Classical vs. sampling vs. tracing profilers

Overview of 4 Profilers

Pyinstrument

What

● Sampling profiler
● Wall clock time & full stack traces
● Hooks to profile Django / Flask requests

PyPI package: pyinstrument

Homepage:
https://github.com/joerick/pyinstrument

How

$ pip install pyinstrument

$ pyinstrument slow_program.py

Or, for an HTML report, saved to a file

$ pyinstrument --html -outfile
out.html slow_program.py

https://pypi.org/project/pyinstrument/
https://github.com/joerick/pyinstrument

What

● Sampling profiler
● Can profile already running Python

programs, in prod!
● Works entirely outside the process
● But… may require special permissions

(sudo, etc.)

PyPI package: py-spy

Homepage: https://github.com/benfred/py-spy

Py-Spy

How

$ pip install py-spy

$ py-spy record -o out.svg --
python3 slow_program.py

Or, for a SpeedScope-style flamegraph report,
viewable via https://speedscope.app

$ py-spy record -o out.sscope -f
speedscope -- python3
slow_program.py

Also --pid option, top & dump commands.

https://pypi.org/project/py-spy/
https://github.com/benfred/py-spy
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.speedscope.app/

Scalene

What

● Sampling profiler
● Profiles both CPU and memory usage
● Profiles at the line level

PyPI package: scalene

Homepage:
https://github.com/plasma-umass/scalene

How

$ pip install scalene

$ scalene slow_program.py

Or, for an HTML report, saved to a file

$ scalene --html -outfile out.html
slow_program.py

https://pypi.org/project/scalene/
https://github.com/plasma-umass/scalene

VizTracer

What

● Tracing profiler
● When you want to focus on rare events,

not averages!
● But… more complex tool

PyPI package: viztracer

Homepage:
https://github.com/gaogaotiantian/viztracer

How

$ pip install viztracer

$ viztracer -o out.html
slow_program.py

Use Chrome to view HTML report.

Many options to control what is captured. See
the doc at https://viztracer.readthedocs.io.

https://pypi.org/project/viztracer/
https://github.com/gaogaotiantian/viztracer
https://viztracer.readthedocs.io

Making Code Faster

Some Ideas...

● Look at the big picture
● Focus on the bottlenecks
● Do less work / avoid repeated work
● Focus on overhead / batch work
● Understand the libraries you are using (e.g immutable vs. mutable)
● Vectorize / delegate the work to fast third-party code
● Parallelize
● Use more efficient data structures
● Use Cython / Numba

Two Crazy Ideas

1. Profile All Functionality at Least Once!

2. Profile in Your CI!

Further Readings

Optimization in depth (memset for AMD64):
https://msrc-blog.microsoft.com/2021/01/11/building-f
aster-amd64-memset-routines/

Tracing the GIL with Perf & VizTracer:
https://www.maartenbreddels.com/perf/jupyter/python
/tracing/gil/2021/01/14/Tracing-the-Python-GIL.html

Sampling vs. Tracing:
https://danluu.com/perf-tracing/

Data Center Tracing:
https://www.youtube.com/watch?v=QBu2Ae8-8LM

Thanks!

Summary

Focus where it pays / build a basic model / setup
for repeatable, quick iterations / measure / iterate

Pyinstrument: sampling, full stack trace, web
request hooks

Py-Spy: sampling, on already running code in prod

Scalene: sampling, line-level, memory usage

VizTracer: tracing (for rare events)

Bonus: profile in your CI!

http://christianhudon.name/talks/#mp-python-profiling

https://msrc-blog.microsoft.com/2021/01/11/building-faster-amd64-memset-routines/
https://msrc-blog.microsoft.com/2021/01/11/building-faster-amd64-memset-routines/
https://msrc-blog.microsoft.com/2021/01/11/building-faster-amd64-memset-routines/
https://www.maartenbreddels.com/perf/jupyter/python/tracing/gil/2021/01/14/Tracing-the-Python-GIL.html
https://www.maartenbreddels.com/perf/jupyter/python/tracing/gil/2021/01/14/Tracing-the-Python-GIL.html
https://danluu.com/perf-tracing/
https://www.youtube.com/watch?v=QBu2Ae8-8LM
http://christianhudon.name/talks/#mp-python-profiling

